
IsoSurfaces 1

⚾
IsoSurfaces
DEF: Scalar Field:

Isosurface: , where is called the isovalue

curvilinear grid: a grid made of not straight lines

we represent the curvilinear grid (3D) as an array , where each element
stores a point in space for the grid and a scalar value we can

f : R →3 R
A =τ {x ∈ R :3 f(x) = τ} τ

F [i][j][k]
p ∈i,j ,k R3 f ∈i,j ,k R

IsoSurfaces 2

also rappresent the isosurface in the so said “computational space” or reference
space, being a linearization of the curvilinear grid, that maintains the same cells, said
Voxels, and nodes

Discrete IsoSurfaces
an isosurface in a discrete space can be defined as a surface

i.e. if the voxel intecepts the isosurface, there must be a couple of nodes one bigger and
one smaller than

A :τ
′ ∀ voxels v∃v , v :i j f(v) ≤i τ ,f(v) ≥j τ , v = {v ,…, v }1 8

τ

IsoSurfaces 3

the problem is now: how do we find the isosurfaces?

Marching cubes algorithm

for all voxels:
 determine the signs of the nodes of v(- if vi < tau, + if vi>tau)
 triagulate according to templates

templates in 2d

templates in 3d

IsoSurfaces 4

Construction with OctTrees

Min-Max OctTree
We construct a complete OctTree over the nodes of the scalar field, where each child
points to the lower left verteces of the voxels and each leaf stores the minimum and
maximum values of the nodes, for inner nodes the reasoning is propagated with respect
to the children.

The isosurface now passes throug a region of the octre node if and only if

at this point the algorithm is a simple recursive visit of the tree, where we seek if the
node has children, then find the child that respects the condition

Interlude: Span space

Problem: “1-dimension stabbing query”
we have N intervals and a point called query point. we searh for all the
intervals “stabbed” by , i.e. all the intervals containing :

Solution idea

min(v) ≤
τ ≤ max(v)

{a , b } ∈i i R θ

θ θ

IsoSurfaces 5

we consider the intervals as points in , where the x coordinate is the begin and the
is the end.

obviously since
everything will live over the line splitting
the first quadrant. at this point theta is a
point on the diagonal, we can overlay a
lattice on the span space, such that all
the lines of the lattice are equidistant and
the points are equidistributed over the
lattice lines.

we derive that lattice cells are intercepted
exactly diagonally or not at all and a and
b will be sorted by the lattice.

we can create 2 lists:

 = list of all points in row i in ascending order by a from columns 1 to i-1

 = list of all points in row i in descending order by b from columns 1 to i-1

for all the remaining points on diagonal we build a new lattice recursively

we can now derive this algorithm:

for all cells (l, l) in lattice containing theta:
 for i = l+1 to L:
 traverse lia[j].a>0
 for row l
 traverse Lll up to llb[j].b<theta
 for cell (l,l):
 recurse into the sub lattice

running time
each cell contains points

we perform a binary searh, followed by a loop, followed by the recursion, finding the
points we found(k), the total complexity is:

R2 y

∀points,y ≥ x

Li
a

Li
b

=
2
L2
n

L2
2n

T (n) = O(logL) +O(L) +O(k) + T () =
L2
2n O()

log(log(n))
log n2

IsoSurfaces 6

 Construction of an isosurface on a time
varing field
Given N 3d scalar fields, for , we can define

if we consider a specific voxel and its and and its trajectory over
time, we want a criterion o consider if the voxel experiences a larve variation over time

we say that the voxel has a small temporal variation if and only if all
points are contained in a 2x2 contiguos cells in span space

i.e when t varies the isosurface stays in a 2x2 grid in the lattice

we can construct a Temporal Index
Tree:

where contains all voxels v that have
small temporal variation over time

to construct it, we start with the set of
voxels and as a root, then we
create the span space of all the voxels in
v and time interval from 0 to N. at this
point for each voxel we check the
ones with small temporal variance, at this
point if they have it we add the voxels to

the root, otherwise we create a and
nodes and we add to them the voxels

in . at this point we build an
octtree for each node in

t ∈i {t , t }0 N−1

min (v) =t min{nodes of voxel v at time t}

max (v) =t max{nodes of voxel v at time t}

min (v) =i
j min{min (v),…,min (v)}i j

max (v) =i
j max{max (v),…,max (v)}i j

min (v)t max (v)t

∀t ∈ i…, j
(min (v),max (v))t t

Ti
J

[i, j]

V T0
N

v ∈ V

T0
2
N

T
2
N
N

V /V (T)0N

V (T)j
i

