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⚾
IsoSurfaces
DEF: Scalar Field: 

Isosurface: , where  is called the isovalue

curvilinear grid: a grid made of not straight lines

we represent the curvilinear grid (3D) as an array , where each element 
stores a point in space for the grid  and a scalar value  we can 

f : R →3 R
A =τ {x ∈ R :3 f(x) = τ} τ

F [i][j][k]
p ∈i,j ,k R3 f ∈i,j ,k R
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also rappresent the isosurface in the so said “computational space”  or reference 
space, being a linearization of the curvilinear grid, that maintains the same cells, said 
Voxels, and nodes

Discrete IsoSurfaces
an isosurface in a discrete space can be defined as a surface 

i.e. if the voxel intecepts the isosurface, there must be a couple of nodes one bigger and 
one smaller than 

A :τ
′ ∀ voxels v∃v , v :i j f(v ) ≤i τ ,f(v ) ≥j τ , v = {v ,…, v }1 8

τ
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the problem is now: how do we find the isosurfaces?

Marching cubes algorithm

for all voxels: 
  determine the signs of the nodes of v(- if vi < tau, + if vi>tau) 
  triagulate according to templates

templates in 2d

templates in 3d
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Construction with OctTrees

Min-Max OctTree
We construct a complete OctTree over the nodes of the scalar field, where each child 
points to the lower left verteces of the voxels and each leaf stores the minimum and 
maximum values of the nodes, for inner nodes the reasoning is propagated with respect 
to the children.

The isosurface now passes throug a region of the octre node if and only if 

at this point the algorithm is a simple recursive visit of the tree, where we seek if the 
node has children, then find the child that respects the condition

Interlude: Span space

Problem: “1-dimension stabbing query”
we have N intervals  and a point  called query point. we searh for all the 
intervals “stabbed” by , i.e. all the intervals containing :

Solution idea

min(v) ≤
τ ≤ max(v)

{a , b } ∈i i R θ

θ θ



IsoSurfaces 5

we consider the intervals as points in , where the x coordinate is the begin and the  
is the end.

obviously since  
everything will live over the line splitting 
the first quadrant. at this point theta is a 
point on the diagonal, we can overlay a 
lattice on the span space, such that all 
the lines of the lattice are equidistant and 
the points are equidistributed over the 
lattice lines.

we derive that lattice cells are intercepted 
exactly diagonally or not at all and a and 
b will be sorted by the lattice. 

we can create 2 lists:

 = list of all points in row i in ascending order by a from columns 1 to i-1

 = list of all points in row i in descending order by b from columns 1 to i-1

for all the remaining points on diagonal we build a new lattice recursively

we can now derive this algorithm:

for all cells (l, l) in lattice containing theta: 
 for i = l+1 to L: 
  traverse lia[j].a>0 
 for row l 
  traverse Lll up to llb[j].b<theta 
 for cell (l,l): 
  recurse into the sub lattice

running time
each cell contains  points

we perform a binary searh, followed by a loop, followed by the recursion, finding the 
points we found(k), the total complexity is:

R2 y

∀points,y ≥ x

Li
a

Li
b

=
2
L2
n

L2
2n

T (n) = O(logL) +O(L) +O(k) + T ( ) =
L2
2n O( )

log(log(n))
log n2
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 Construction of an isosurface on a time 
varing field
Given N 3d scalar fields, for , we can define 

if we consider a specific voxel and its  and  and its trajectory over 
time, we want a criterion o consider if the voxel experiences a larve variation over time

we say that the voxel has a small temporal variation if and only if  all 
points  are contained in a  2x2 contiguos cells in span space

i.e when t varies the isosurface stays in a 2x2 grid in the lattice

we can construct  a Temporal Index 
Tree:

where  contains all voxels v that have 
small temporal variation over time 

to construct it, we start with the set of 
voxels  and as a root, then we 
create the span space of all the voxels in 
v and time interval from 0 to N. at this 
point for each voxel  we check the 
ones with small temporal variance, at this 
point if they have it we add the voxels to 

the root, otherwise we create a  and 
nodes and we add to them the voxels 

in . at this point we build an 
octtree for each node in 

t ∈i {t , t }0 N−1

min (v) =t min{nodes of voxel v at time t}

max (v) =t max{nodes of voxel v at time t}

min (v) =i
j min{min (v),…,min (v)}i j

max (v) =i
j max{max (v),…,max (v)}i j

min (v)t max (v)t

∀t ∈ i…, j
(min (v),max (v))t t
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